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ABSTRACT

Power-law (fractal) extreme-value statistics are
applicable to many natural phenomena under a
wide variety of circumstances. Data from a hydro-
logic station in Keokuk, Iowa, shows the great
flood of the Mississippi River in 1993 has a recur-
rence interval on the order of 100 years using
power-law statistics applied to partial-duration
flood series and on the order of 1,000 years using
a log-Pearson type 3 (LP3) distribution applied to
annual series. The LP3 analysis is the federally
adopted probability distribution for flood-frequency
estimation of extreme events. We suggest that power-
law statistics are preferable to LP3 analysis. As a
further test of the power-law approach we consi-
der paleoflood data from the Colorado River. We
compare power-law and LP3 extrapolations of his-
torical data with these paleo-floods. The results are
remarkably similar to those obtained for the Mis-
sissippi River. Recurrence intervals from power-
law statistics applied to Lees Ferry discharge data
are generally consistent with inferred 100- and
1,000-year paleofloods, whereas LP3 analysis gives
recurrence intervals that are orders of magnitude
longer. For both the Keokuk and Lees Ferry gauges,
the use of an annual series introduces an artificial
curvature in log-log space that leads to an underes-
timate of severe floods. Power-law statistics are pre-
dicting much shorter recurrence intervals than the
federally adopted LP3 statistics. We suggest that if
power-law behavior is applicable, then the likeli-
hood of severe floods is much higher. More con-
servative dam designs and land-use restrictions
may be required.

INTRODUCTION

The great flood of 1993 in the upper Mississippi
River basin once again focused attention on the relia-
bility of flood-frequency forecasts. A fundamental ques-
tion in calculating flood probabilities is whether the
statistical methods used provide an adequate estimate for
expected recurrence intervals. The results presented in
this paper suggest that federally adopted techniques for
flood-frequency forecasting in the Mississippi River
basin seriously underestimate recurrence intervals of
extreme floods.

Floods are complex phenomena involving coupled
meteorological and hydrological processes; they are
also influenced by human facilities and activities, includ-
ing dams, channelization, and land use. Recurrence
intervals are a means of expressing the odds of a given
magnitude flood being exceeded in any year and are an
important factor in flood control, land-use regulation,
emergency planning, and insurance considerations.

Historically, flood-frequency estimation has been
treated strictly on an empirical basis and a wide variety
of statistical distributions have been used. The most
commonly used frequency-magnitude distributions in
hydrology can be divided into four groups: the normal
family (normal, log-normal, log-normal type 3), the
general extreme-value (GEV) family (GEV, Gumbel,
log-Gumbel, Weibull), the Pearson type 3 family (Pearson
type 3, log-Pearson type 3), and the generalized Pareto
distribution. Stedinger and others (1993) provide an
excellent discussion and review of these different dis-
tributions. Severe floods are associated with the tails of
the flood-frequency distributions. Two extreme beha-
viors for the tails are power-law and exponential. Power-
law tails give much shorter estimates of flood recurrence
intervals than exponential tails.

The standard approach for flood-frequency estima-
tion is to consider a sequence of maximum annual floods
and obtain the best empirical fit of the chosen statis-
tical distribution to this data set. The best fit is obtained
by equating the statistical moments of the data to the
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distribution. Additional constraints, such as the censor-
ing of outlier points, are commonly used. In the United
States, the federally adopted approach to flood-fre-
quency estimation is to fit logarithms of the annual peak
discharges to the Pearson type 3 distribution (U.S.
Water Resources Council, 1982); some countries have
adopted other types of distributions. Australia uses log-
Pearson type 3 (LP3) distributions as their standard for
flood-frequency estimation. However, Vogel and others
(1993) have argued that in many parts of Australia
generalized Pareto distributions perform significantly
better than LP3.

In this paper the validity of power-law statistics in
estimating floods is considered. Many natural pheno-
mena satisfy power-law (fractal) frequency-magnitude
statistics. Examples are found in a wide variety of cir-
cumstances and includc fragmentation, carthquakes,
volcanic eruptions, mineral deposits, and land forms
(Turcotte, 1992). Turcotte and Greene (1993) have
argued the validity of power-law statistics to floods in
the United States utilizing 14 USGS bench-mark gaug-
ing stations. Turcotte (1994) extended these arguments
by studying 1,200 gauging station records across the
United States.

We examine the great Mississippi River flood of 1993
with power-law and LP3 analyses, concentrating on his-
torical flood records from Keokuk, Iowa (Figure 1). This
station has a long record (1879-present) and is repre-
sentative of flood discharges on the Mississippi River
during the great flood of 1993. A difficulty with calcu-
lating recurrence intervals is that they are usually based
on hydrologic station records of continuous discharges,
which are generally short, on the order of a hundred years
or less. As a further test of the power-law approach we
consider paleofloods on the Colorado River in the Grand
Canyon of Arizona. Paleoflood data give an estimate of
discharge for single extreme events over a much longer
time period.

DISTRIBUTIONS
Power-Law

The volumetric discharge q(t) at a point on a river
is generally a continuous time series. We are concerned
with the extreme values of this time series and define
Q(T) to be the maximum discharge associated with a
recurrence interval of T years. For example, Q(100)
would be the maximum discharge (flood) that has an
average recurrence interval of 100 years, i.e., in any one
year, there is a one-in-one hundred chance of the peak
discharge equaling or exceeding Q(100).

The power-law distribution for flood-frequency takes
the form:

Q(T) = CT® Eq. 1

where C and o are regression coefficients. Taking the
logarithms of both sides of Equation 1 gives:

log T) = log T + C' Eq. 2
This scale invariant distribution can be expressed in
terms of F, the ratio of the peak discharge over a 10-
year interval to the peak discharge over a 1-year inter-
val. With self-similarity, the parameter F is also the ratio
of the 100-year peak discharge to the 10-year peak
discharge:

F=10) _ M = constant Eq. 3
Q1 Qo)
In terms of o we have:
F = 10% Eq. 4

If the flood-frequency factor F is large the ratio of
the 10-year to the 1-year flood will be large, if F is
small the ratio will be small. The parameter o is the
slope of a log(Q) versus log(T) plot. Parameters o and
F are related by Equation 4. As in all applications of
power-law distributions to natural processes, there are
upper and lower limits to the validity of the power-law.

Log-Pearson Type 3

The LP3 distribution has been adopted by lederal
agencies in the United States for flood-frequency esti-
mation (U. S. Water Resources Council, 1982). The LP3
distribution describes a random variable whose logarithm
is a Pearson type 3 distribution. The logarithms of an
annual flood scrics arc uscd to calculate the mean, stan-
dard deviation, and skew. These three moments deter-
mine the shape, scale, and location parameters that
characterize the LP3 distribution. The LP3 fit involves
three empirical constants whereas the power-law fit
involves only two. The U. S. Water Resources Council
(1982) outlines the application of the LP3 to an annual
flood series. In our analyses, we use these methods for
dealing with outliers, conditional probability, weighted
skew, and K coefficients. The weighted skew coefficient
is calculated using the generalized skew coefficient as
obtained from the U. S. Water Resources Council (1982)
generalized skew map.

DATA ANALYSIS
Annual and Partial-Duration Flood Series
An annual flood is the peak discharge during a water

year, where the water year is defined to be a 12-month
period from October 1 of the previous year through
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Explanation
e Extent of 1993 Flooding

Mississippi River
at Keokuk, lowa

Boundary of Upper Mississippi River Basin

Figure 1. Map of the United States showing the upper Mississippi River basin and the extent of flooding during 1993 (U.S. Geological Sur-
vey, 1996). Also shown is the location of the Keokuk, Iowa, stream-flow-gauging station used in this paper.

September 30 of the water year. For example, the 1995
water year extends from October 1, 1994, through Sep-
tember 30, 1995. Data sets used in our analyses consist
of mean daily discharges and are used to determine the
peak discharge (flood) in each water year. The annual
flood series is the sequence of annual floods over a speci-
fied interval of time.

A major problem with an annual flood series is that
several floods in a given water year may be larger than
the annual flood in another water year. To overcome
this difficulty, we also consider a partial-duration flood
series where more than one flood can occur in a water
year. In our definition of a partial-duration flood series,
peak discharges must be separated by at least thirty
days in order to be classified as separate floods. For a
given water year we take Q, the maximum mean daily
discharge (flood) for that year, and delete all values thirty
days on either side. We then take the next largest Q,
and again delete all values thirty days on either side.
We continue until we have the six largest Q’s for that
water year. This process is repeated for the other water
years. The total number of water years in our data set
is N. To arrive at the partial-duration flood series the

6N values of Q are ordered from largest to smallest. Our
final partial-duration flood series is the N largest ordered
Q’s, i.e., the subset of largest ordered Qs that corres-
ponds with the number of water years considered.

Other definitions for a partial-duration flood series can
be made (Hipel, 1994). For example, we could have
required that the Q’s in the partial-duration series be
separated by sixty days instead of thirty days, or applied
the criteria that the flow q must drop to some fraction,
say 50 percent, of the flood value Q before another
flood was chosen. Another approach is to use the peaks
over threshold method (Hosking and Wallis, 1987,
Davison and Smith, 1990; and Barrett, 1992). In this
method the peaks over a chosen threshold, typically one
to five per year, define the partial-duration flood series.
We have applied several partial-duration definitions to
our data sets and find that the differences are small; as
such we only use the definition that Q’s are separated
by at least thirty days.

For both the annual flood series and the partial-
duration flood series the Q’s of each flood are ranked
(r=1, 2,3, ..., N) from largest to smallest, where N
is the number of water years in the data set. If Q is
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equaled or exceeded r times in N years (N is large), then
the recurrence interval in years is T = N/r. As an
example, if we take a data set with N = 114 water years,
the largest Q is assigned a recurrence interval of
T = 114/1 = 114 years, the second largest T = 114/2 =
57 years, and so forth until the 114th value with T =
114/114 = 1 year. This is entirely equivalent to a cumu-
lative frequency/size analysis where r, the cumulative
number greater than a size, 1s plotted as a function of
size. This technique is routinely applied to the fre-
quency/size statistics of earthquakes and other extreme-
value events (Turcotte, 1992).

Data

On the basis of length of record and drainage basin
size we have chosen gauging station 05474500 on the
Mississippi River at Keokuk, Iowa, to be representa-
tive of flocding statistics on the Mississippt River dur-
ing the great 1993 flood. The drainage area upstream of
this station is 308,000 km? and a 117-year record of
mean daily discharges from 1879 to 1995 is available
(Slack and Landwehr, 1992; May, 1996). We use this
data to construct both annual and partial-duration flood
series for the gauge at Keokuk, Iowa. In our analyses,
we calculate flood-frequency forecasts that would be
made with data available before the great 1993 Missis-
sippi River flood occurred (water years 1879-1992) and
then compare how the forecasts change with the addition
of the 1993 flood (water years 1879-1995). For each time
period, we estimate flood-frequency using LP3 applied
to annual series, and compare these with power-laws
applied to partial-duration series.

One of the most extensive studies of paleofloods
was carried out by O’Connor and others (1994). These
authors used the stratigraphic record to quantify large
floods during the last 4,500 years at Axehandle Alcove
on the Colorado River in the Grand Canyon, Arizona.
‘We compare their geologic estimates of the lower bounds
of discharges associated with the largest paleofloods
that occurred in the last 4,500 years with historical dis-
charge data available from water years 1921-1962 at Lees
Ferry, Arizona (ADAPS, 1996). The Lees Ferry gauge
at USGS station 09380000 has a drainage area of
289,600 km? and is located on the Colorado River in
Arizona, 3 km upstream of Axehandle Alcove. Unregu-
lated daily discharge data exists for water years 1921-
1962. Discharge has been regulated by the Glen Canyon
Dam siuce the beginning of the 1963 water year.

RESULTS
Mississippi River at Keokuk, Iowa

In Figure 2 (1879-1992) and Figure 3 (1879-1995)
the logarithms of the Keokuk floods, log(Q), are
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Figure 2. Dependence of the maximum daily discharge Q asso-
ciated with the period T on the period T. The partial-duration and
annual flood series for station 05474500 on the Mississippi River
at Keokuk, Iowa, are shown for water years 1879-1992. Also
included is the least-squares power-law fit for the partial-duration
flood series, as well as the log-Pearson type 3 (LP3) distribution
based on the annual flood series and the procedures of Bulletin 17B
(U. S. Water Resources Council, 1982).

plotted against the logarithms of the recurrence inter-
vals, log(T). For both time periods, the annual and
partial-duration flood series strongly diverge for periods
of less than about 5 years because multiple floods in
some water years are much larger than the largest flood
in other water years.

For a power-law distribution of floods the relation
between log(Q) and log(T) is given in Equation 2. In
log-log space a power-law distribution corresponds to a
straight line with slope o and intercept C'. The best-fit
straight lines to the partial-duration Keokuk flood series
for 1879-1992 and 1879-1995 using a least-squares fit
in log-log space give respectively o = 0.19, 0.20 and C'
= 3.69, 3.68 with an r* = 0.97, 0.94. The corresponding
flood-frequency factors from Equation 4 are F = 1.53
and 1.58. The best-fit straight lines for the two time
periods are given separately in Figures 2 (1879-1992)
and 3 (1879-1995) and together in Figure 4. Extrapola-
tion of the straight line for water years 1879-1992 to the
maximum daily flow during the 1993 flood, Q = 12,300
m?/s, results in a recurrence interval of T = 151 years.
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Figure 3. Same as Figure 2 except the period considered is water
years 1879-1995. The maximum daily discharge associated with
the 1993 flood is shown.

With the addition of 1993-1995 (water years 1879-
1995) this extrapolation is reduced to a recurrence in-
terval of T = 106 years. The two forecasts do not dif-
fer significantly from one another (Figure 4) and are
consistent with the 1993 flood being a typical 100-year
flood.

Another consideration is whether the extrapolated
recurrence intervals for Keokuk would be significantly
different for much smaller subsets of the 1879-1995
period. Using the same procedure for two 32-year
periods, extrapolation of the best fit power-law line to
a discharge the size of the great flood of 1993 results
in recurrence intervals at Keokuk of 179 and 165 years
for the periods 1900-1931 and 1932-1963. The results
for the two 32-year periods do not vary significantly
from the recurrence intervals of 151 and 106 years as
obtained for the 114-year (1879-1992) and 117-year
(1879-1995) periods.

The best LP3 distribution is found using the annual
flood series from the gauge at Keokuk, Iowa, and the
procedures as outlined by the U.S. Water Resources
Council (1982). The result using water years 1879-1992
is given in Figure 2. After two low outliers were cen-
sored, the logarithms of the remaining 112 points were
used to obtain the first three moments: X = mean = 3.70,
S = standard deviation = 0.14, and G = station skew =

20,000
Largest daily mean discharge measured at
Mississippi River, Keokuk, lowa, water years
1879-1985. July 10, 1993, Q = 12,300 m?¥/s.
| 1
. 13- P
1879 1995%‘1} ]

10,000- § == | ———3~,

&1879-1992

Q {m?/s)

————— Power-Law Fit (Partial-Duration Series)

2,0004 — LP3 Fit (Annual Series)
Water Years 1879-1995
——— Power-Law Fit (Partial-Duration Series)
—— LP3 Fit (Annual Series)
TFCCR — N
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Figure 4. The power-law and LP3 curves given in Figures 2 and
3 are extrapolated to the maximum flow during the 1993 flood (Q
= 12,300 m%s). For the 1879-1992 flood series the recurrence
interval for the 1993 flood is 151 years based on power-law statis-
tics and 4,300 years based on LP3 analysis. For the 1879-1995
flood series the recurrence interval is 115 years based on power-law
statistics and 1,000 years based on LP3 analysis.

—0.36. The weighted skew_coefficient. Gw. =.=0.37, is
calculated using a generalized skew coefficient of G =
—0.4. The best-fit LP3 distribution given in Figure 2 has
considerable curvature resulting in long recurrence inter-
vals for severe floods. The extrapolation of this LP3
curve to the great flood of 1993, Q = 12,300 m?/s, is
shown in Figure 4. For the time period 1879-1992, the
resulting recurrence interval is T = 4,300 years, almost
thirty times longer than what we obtained using power-
law statistics for the same time period.

We have also used the LP3 distribution to obtain a
best-fit LP3 curve for the annual flood series at Keokuk
from 1879-1995. Again, two low outliers were censored,
and we found X = 3.70, § = 0.14, G = -0.22, and Gy,
= —0.25. The resulting LP3 curve is given in Figure 3
and again has considerable curvature. Extrapolation of
the LP3 curve to the great flood of 1993 (Q = 12,300
m¥/s) is also shown in Figure 4. For the time period
1879-1995, the extrapolated recurrence interval is T =
1,000 years, about ten times longer than what we found
using power-law statistics for the same time period.

The inclusion of the 1993 Mississippi River flood in
the LP3 analysis results in the two recurrence interval
estimates being very different, T = 4,300 years (1979-
1992) versus T = 1,000 years (1879—1995). The recurence
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Figure 5. Dependence of the maximum daily discharge Q asso-
ciated with the period T on the period T for the Colorado River in
the Grand Canyon, Arizona. The partial-duration and annual flood
series for station 09380000 on the Colorado River at Lees Ferry,
Arizona, are shown for water years 1921-1962. The least-squares
power-law fit to the partial-duration flood series and LP3 distri-
bution based on the annual flood series are also included. Points A
and B are estimates of two paleofloods based on the stratigraphic
record at Axehandle Alcove obtained by O’Connor and others
(1994).

intervals found using LP3 are considerably more sensi-
tive to a single large flood (in this case the great 1993
Mississippi River flood) than those found using power-
laws.

Colorado River Paleofloods

Using data from the Lees Ferry gauge on the Colo-
rado River for water years 1921-1962, we construct the
partial-duration and annual flood series, ordering them
from largest to smallest (r = 1, 2, 3, ..., 42). For a
power-law distribution, the best-fit straight line to the
partial-duration flood series using a least-squares fit in
log-log space gives a = 0.28, C' = 3.28, r* = 0.92 and
F = 1.93. This straight-line fit is given in Figure 5. Using
the best-fit LP3 distribution to the annual flood series
with no outliers censored, the first three moments are X
=332, § = 0.20, and G = -0.34. The weighted skew
coefficient of Gy, = -0.23 is calculated using a gener-
alized skew coefficient of G = 0.00. The LP3 fit has much
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more curvature in log-log space when compared to the
power-law fit (Figure 5) resulting in longer recurrence
intervals for severe floods.

Two paleoflood discharge estimates from stratigra-
phic interpretations of O’Connor and others (1994) at
Axehandle Alcove are plotted as points A and B in
Figure 5. Point A correlates with sediments deposited
after 520-280 calendar years BP and a peak flow greater
than Q = 8,800 m’s. Point A is interpreted to be the
historic Colorado River flood of 1884. The flow from
stratigraphic interpretation (Q = 8,800 m?/s) compares
favorably with rough historical estimates (Q = 8,500
m?/s). We assign this point a recurrence interval of 112
years. Extrapolation to the Colorado River flood of
1884 (Q = 8,800 m?/s) using the Lees Ferry power-law
fit suggests a recurrence interval of T = 200 years. Ex-
trapolation of the LP3 curve suggests a much longer
recurrence interval of T = 7,000 years. Point B is a single
great flood with a flow greater than Q = 14,000 m3/s
and was dated by O’Connor and others (1994) at 1,600~
1,200 calendar years BP. We assign this point a recur-
rence interval of T = 1,400 years. This great 1,000-year
paleoflood is remarkably close to the power-law extrapo-
lation and greatly exceeds any flood forecast by LP3
analysis.

DISCUSSION

The federally adopted approach for flood-frequency
estimation uses LP3 distributions fit to annual flood
series. Our primary objection to this approach is that the
use of the annual flood series introduces an artificial cur-
vature in log-log space that leads to an underestimate of
severe floods. There are often two, three, or even more
partial-duration floods in one year that exceed annual
floods in other years. In an annual flood series, multiple
floods during a water year are ignored since only one
flood per water year is considered. In Figures 2, 3, and
5, the partial-duration flood series is well represented by
power-law statistics whereas the annual flood series is
not.

For power-law analyses, the great 1993 Mississippi
River flood was a 100-year flood, whereas for the LP3
analysis it was a 1,000- to 10,000-year flood. In many
ways the 1884 Colorado River flood is analogous to the
1993 Mississippi River flood. These two floods are
either typical 100-year floods or 1,000-year (or more)
tfloods that happened to occur during this 100-year time
interval. In both cases, the partial-duration series is
better represented by power-law statistics than LP3.
The power-law statistics forecast much shorter recur-
rence intervals supporting the idea that these two floods
are typical 100-year tloods. Finally, the power-law fit to
the historical discharges at Lees Ferry on the Colorado
River extrapolates extremely well to both of these
stratigraphically interpreted paleofloods at Axehandle
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Alcove (Figure 5). The paleoflood dated at 1,600—1,200
years BP has a discharge 60 percent greater than the
1884 flood and is a good candidate for the “true” 1,000-
to 10,000-year Colorado River flood.

Up to this point use of power-law versus LP3 analy-
ses for flood-forecasting has been strictly empirical. We
now address the question, is there a scientific rationale
for the applicability of power-law statistics to severe
floods? Many natural phenomena satisfy power-law
(fractal) frequency-magnitude statistics and evidence
is accumulating to support an underlying physical ba-
sis (Feder, 1988). This evidence includes systems, such
as the logistic map (May, 1976), that exhibit determi-
nistic chaos and often satisfy power-law statistics.
Further evidence comes from a variety of both deter-
ministic and statistical models, such as the sand-pile
model (Bak et al.,, 1988), that exhibit self-organized
criticality and also yield power-law frequency-size dis-
tributions.

A river flow is a classic example of a time series. A
time series is self-similar if its spectral power density
has a power-law dependence on frequency. Self-similar
time series are often referred to as fractional Gaussian
noises or fractional Brownian walks (Mandelbrot and
Wallis, 1969). The work of Hurst and others (1965) sup-
ports the application of power-law distributions to flood-
frequency estimation. Hurst studied the flow of the Nile
River and introduced rescaled range analysis. By per-
forming a running sum of the river discharge to find the
variations in reservoir storage, Hurst found that the
reservoir storage is generally a fractional Brownian mo-
tion with a power-law dependence of the storage range
on the interval of time considered.

An essential question with floods is whether the
frequency-magnitude distribution obeys power-law, log-
normal, or other statistics. If severe floods result from
the successive addition of a sequence of random events,
such as rainstorms, then in analogy to the range of reservoir
storage, the floods may obey power-law statistics. The
1993 flood on the Mississippi River was caused by a
sequence of severe rainstorms over a period of months,
accumulating to give a very high flood run-off. Although
the processes that lead to a flood are very complex, it
appears reasonable to hypothesize that severe floods be-
have as fractional Brownian walks rather than fractional
Gaussian noises and as a result may satisfy power-law
statistics.

CONCLUSIONS

We have applied power-law statistics to the partial-
duration flood series at Keokuk, Iowa, for the periods
1879-1992 and 1879-1995, and find that the great
Mississippi River fload of 1993 (Q - 12,300 m%/s)
would have a recurrence interval of T = 151 and 115
years. We have also applied the log-Pearson type 3

distribution to the annual flood series at this station
and find that the 1993 Mississippi flood would have a
recurrence interval of T = 4,300 and 1,000 years. Accord-
ing to power-law statistics this flood was a rather typical
100-year flood, whereas for LP3 it was a 1,000- to
10,000-year flood. In addition, the LP3 analysis is con-
siderably more sensitive to the inclusion of the single
large flood (the great 1993 Mississippi River Flood)
than the power-law analysis.

As a further test of the two methods of flood-fre-
quency forecasting we have considered a record of
paleofloods on the Colorado River. The results are re-
markably similar to those for the Mississippi River.
Power-law recurrence interval estimates based on histori-
cal discharge data from Lees Ferry are generally con-
sistent with inferred 100- and 1,000-year paleofloods
from Axehandle Alcove, just downstream of Lees Ferry.
On the other hand, I.P3 analysis gives recurrence inter-
vals that are orders of magnitude longer.

Although there will certainly be both upper and
lower cutoffs on the applicability of power-law distribu-
tions, we argue that for the Keokuk and Lees Ferry
gauges there is an excellent fit of the power-law distri-
bution to the partial-duration flood series. If power-law
fits are correct, then severe floods are much more likely
to occur than flood-frequency forecasts based on the
federally adopted log-Pearson type 3 methodology.
More conservative designs for dams and land-use re-
strictions may be appropriate. We suggest using the
power-law fit when extrapolating to arrive at estimates
for the severity of future floods.
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